Via faster-than-light (FTL) travel
If one were able to move information or matter from one point to another faster than light, then according to special relativity, there would be some inertial frame of reference in which the signal or object was moving backward in time. This is a consequence of the relativity of simultaneity in special relativity, which says that in some cases different reference frames will disagree on whether two events at different locations happened "at the same time" or not, and they can also disagree on the order of the two events (technically, these disagreements occur when the spacetime interval between the events is 'space-like', meaning that neither event lies in the future light cone of the other). If one of the two events represents the sending of a signal from one location and the second event represents the reception of the same signal at another location, then as long as the signal is moving at the speed of light or slower, the mathematics of simultaneity ensures that all reference frames agree that the transmission-event happened before the reception-event.
However, in the case of a hypothetical signal moving faster than light, there would always be some frames in which the signal was received before it was sent, so that the signal could be said to have moved backwards in time. And since one of the two fundamental postulates of special relativity says that the laws of physics should work the same way in every inertial frame, then if it is possible for signals to move backwards in time in any one frame, it must be possible in all frames. This means that if observer A sends a signal to observer B which moves FTL (faster than light) in A's frame but backwards in time in B's frame, and then B sends a reply which moves FTL in B's frame but backwards in time in A's frame, it could work out that A receives the reply before sending the original signal, a clear violation of causality in every frame. An illustration of such a scenario using spacetime diagrams can be found here. The scenario is sometimes referred to as a tachyonic antitelephone.
According to special relativity, it would take an infinite amount of energy to accelerate a slower-than-light object to the speed of light. Although relativity does not forbid the theoretical possibility of tachyons which move faster than light at all times, when analyzed using quantum field theory, it seems that it would not actually be possible to use them to transmit information faster than light. There is also no widely agreed-upon evidence for the existence of tachyons; the faster-than-light neutrino anomaly had suggested that neutrinos were possibly tachyons, but the results of the experiment were found to be invalid upon further analysis. Another group of experimenters state that a lack of radiation posited by a theory indicates the neutrinos cannot have really been traveling faster than light. The OPERA team leader, Dario Autiero, and CERN's research director, Sergio Bertolucci, note other explanations are possible for the lack of neutrino energy loss via radiation.
Special spacetime geometries
The general theory of relativity extends the special theory to cover gravity, illustrating it in terms of curvature in spacetime caused by mass-energy and the flow of momentum. General relativity describes the universe under a system of field equations, and there exist solutions to these equations that permit what are called "closed time-like curves," and hence time travel into the past.The first of these was proposed by Kurt Gödel, a solution known as the Gödel metric, but his (and many others') example requires the universe to have physical characteristics that it does not appear to have. Whether general relativity forbids closed time-like curves for all realistic conditions is unknown.
Using wormholes
Main article: Wormhole
Wormholes are a hypothetical warped spacetime which are also permitted by the Einstein field equations of general relativity, although it would be impossible to travel through a wormhole unless it were what is known as a traversable wormhole.
A proposed time-travel machine using a traversable wormhole would (hypothetically) work in the following way: One end of the wormhole is accelerated to some significant fraction of the speed of light, perhaps with some advanced propulsion system, and then brought back to the point of origin. Alternatively, another way is to take one entrance of the wormhole and move it to within the gravitational field of an object that has higher gravity than the other entrance, and then return it to a position near the other entrance. For both of these methods, time dilation causes the end of the wormhole that has been moved to have aged less than the stationary end, as seen by an external observer; however, time connects differently through the wormhole than outside it, so that synchronized clocks at either end of the wormhole will always remain synchronized as seen by an observer passing through the wormhole, no matter how the two ends move around. This means that an observer entering the accelerated end would exit the stationary end when the stationary end was the same age that the accelerated end had been at the moment before entry; for example, if prior to entering the wormhole the observer noted that a clock at the accelerated end read a date of 2007 while a clock at the stationary end read 2012, then the observer would exit the stationary end when its clock also read 2007, a trip backwards in time as seen by other observers outside. One significant limitation of such a time machine is that it is only possible to go as far back in time as the initial creation of the machine; in essence, it is more of a path through time than it is a device that itself moves through time, and it would not allow the technology itself to be moved backwards in time. This could provide an alternative explanation for Hawking's observation: a time machine will be built someday, but has not yet been built, so the tourists from the future cannot reach this far back in time.
According to current theories on the nature of wormholes, construction of a traversable wormhole would require the existence of a substance with negative energy (often referred to as "exotic matter"). More technically, the wormhole spacetime requires a distribution of energy that violates various energy conditions, such as the null energy condition along with the weak, strong, and dominant energy conditions. However, it is known that quantum effects can lead to small measurable violations of the null energy condition, and many physicists believe that the required negative energy may actually be possible due to the Casimir effect in quantum physics. Although early calculations suggested a very large amount of negative energy would be required, later calculations showed that the amount of negative energy can be made arbitrarily small.
In 1993, Matt Visser argued that the two mouths of a wormhole with such an induced clock difference could not be brought together without inducing quantum field and gravitational effects that would either make the wormhole collapse or the two mouths repel each other. Because of this, the two mouths could not be brought close enough for causality violation to take place. However, in a 1997 paper, Visser hypothesized that a complex "Roman ring" (named after Tom Roman) configuration of an N number of wormholes arranged in a symmetric polygon could still act as a time machine, although he concludes that this is more likely a flaw in classical quantum gravity theory rather than proof that causality violation is possible.
Source : Wikipedia
0 comments:
Post a Comment